Potential Estimates for Quasi-Linear Parabolic Equations
نویسندگان
چکیده
منابع مشابه
Gradient estimates for degenerate quasi-linear parabolic equations
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients infinitesimally form bounded with respect to the Laplacian we obtain Lq-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space var...
متن کاملRenormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations
We prove the well-posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L1 data. This paper complements the work by Chen and Perthame [9], who developed a pure L1 theory based on the notion of kinetic solutions.
متن کاملA posteriori error estimates for linear parabolic equations
We consider discretizations of linear parabolic equations by A-stable θ-schemes in time and conforming finite elements in space. For these discretizations we derive a residual a posteriori error estimator. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. The error estimates are fully robust in the sens...
متن کاملA posteriori error estimates for non-linear parabolic equations
We consider space-time discretizations of non-linear parabolic equations. The temporal discretizations in particular cover the implicit Euler scheme and the mid-point rule. For linear equations they correspond to the well-known A-stable θ-schemes. The spatial discretizations consist of standard conforming finite element spaces that can vary from one time-level to the other. The spatial meshes m...
متن کاملRunge - Kutta Approximation of Quasi - Linear Parabolic Equations
We study the convergence properties of implicit Runge-Kutta methods applied to time discretization of parabolic equations with timeor solutiondependent operator. Error bounds are derived in the energy norm. The convergence analysis uses two different approaches. The first, technically simpler approach relies on energy estimates and requires algebraic stability of the RungeKutta method. The seco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Nonlinear Studies
سال: 2011
ISSN: 2169-0375,1536-1365
DOI: 10.1515/ans-2011-0408